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Abstract. We develop a theory for the wavevector expansion of the excess grand potential of a
liquid—-vapour interface emphasizing the need to minimize the grand potential density functional
for a given collective coordinate /(y} denoting the position of a surface of fixed density px
(magnetization m*). We rederive the Triezenberg—Zwanzig formula for the surface tension
y which has a unique value independent of p¥. Our analysis yields 2 new expression for
a rigidity x{p*) which is strongly dependent on the particular value of p¥ used to define
1{g). We show that the expressions derived for x(pX) (and ) are precisely those that need
to be adopted when using the recently developed Fisher—Jin rnethod of deriving an effective
interfacial Hamiltonian appropriate to an asymptotically free interface. From the set of effective
Hamiltonians describing the Auctuations of surfaces of all possible fixed density/magnetization
we derive the correct analytic mean-field expression for the position dependence of the spin-spin
correlation function for a free interface modelled by a Landau-Ginzburg-Wilson Hamiltonian,
We emphasize that allowing for the m* -dependence of the rigidity is essential in this study of
interfacial correlations to achieve true thermodynamic consistency.

In developing a microscopic theory of inhomogeneous fluids a ceniral concern is the
derivation of exact expressions refating the surface tension (or excess grand potential) to
integrals involving one-point and two-point (correlation) functions [1]. Analysis of such
exact sum rules has been shown to provide a great deal of information about fluctuations
and correlations at fluid interfaces [2]. Complementing this approach are siudies of effective
interfacial Hamiltonians which model the fluctuations of a collective coordinate rather than
a microscopic order parameter [3]. Whilst these models are not truly microscopic their
analysis has been largely responsible for the recent upsurge in interest and understanding of
fluid interfacial phenomena. In the present paper we shall make connection between a formal
density-functional (DF) approach to inhomogeneous fluids and the recent seminal work of
Fisher and Jin (F1} [4] who have carefully derived an effective interfacial Hamiltonian from
a more microscopic Landau~Ginzburg-Wilson Hamiltonian. We consider how the surface
tension y and a rigidity « for an asymptotically free interface may be formally defined from
DF theory emphasizing the need to impose a minimization principle on the grand potential
density functional 2[p{r)]. We rederive the well-known Triezenberg—Zwanzig formula [1]
for the surface tension and give a new expression for an appropriately defined rigidity in
terms of integrals over one-point and two-point functions [S]. Our expresion for k¥ properly
accounts for the effect of the curvature of a collective coordinate on the density distribution
which minimizes the grand potential density functional. The main conclusions of our study
are as follows.
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(i) The rigidity k = «(p*) is strongly dependent on the choice of crossing-criterion
density p¥. That is, surfaces of different fixed densities have very different rigidities. In
contrast the surface tension y is unique.

(ii) The expression for «k(p*) derived is precisely that which needs to be used when
following the £y method of deriving effective interfacial Hamiltonians.

(iif) The detailed position dependence of the density—density correlation function
at mean-field level is correctly described by a continuous set of effective interfacial
Hamiltonians each of which models the fluctuations of surfaces of different fixed densities
with different rigidities. Allowing for the p*-dependence of x is essential for true
thermodynamic consistency,

To begin consider an equilibrium planar liquid-gas interface separating coexisting bulk
liquid and gas phases. We suppose that the interface is localized near the plane 7 = 0 by, say,
an exttemely weak gravitational field modelled by an external potential V(r) = mgz. The
grand potential £ = $2planer May be written as the sum of the bulk and surface contributions
(ignoring the negligible gravitational field):

Qplanar = =pV + ¥y A (1)
where p is the bulk pressure, V is the total (infinite) volume and A is the planar area,
According to DF theory the grand potential £2 corresponds to the minimum value of the
grand potential density functional $2[p(r)] in the presence of the external field V(r). It is
convenient to write this in the following way. Suppose that the planar equilibrium profile
00(z) has the specific value pp(z¥) = p* at position zX, Now consider the space of all

distributions p, (r) which satisfy g, (r = X,y = p% for all values of the transverse
position vector . Then we can write

Qo] < Q[px ()] Px F Po (2)
and identify
Qpo(r)] = Qpianar. (3)

We wish to generalize the thermodynamic expression (1) and minimization condition (2)
by considering non-planar distributions characterized by a collective coordinate [{y).
Following FJ we note that there are various possible definitions of I(y). We will adopt a
crossing-criterion approach although the formalism is teivially adapted to other definitions.
Consider now a space I' of distributions g, (r) which satisfy the crossing criterion

py(r =z =1y, y) = p* vy. @
That is the collective coordinate I(y) denotes a surface of fixed density pX. The value of

X e (02, 21) but need not be further specified in the formalism. Now we suppose that
3 pg € I for which

Ro=(mM] < Qp, (r)] oy # Pz (5)
and define a collective coordinate functional
QI ()] = Rp=(M]. (©)

Minimization of §2;[I(3)] with respect to {{¥) recovers the unconstrained minimum (3).
From the constrained minimum potential (6) we can proceed to define new fluid properties
by supposing that $;[/{y)] has an appropriate representation generalizing (1). First let us
suppose that the fluctuations are very small such that [/(y) — z%] < 1. Also we assume
that the transverse Fourier transform

51Q) = f dy IVUY) - 25) M
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is non-zero only for very small values of the wavevector . With these provisos we
postulate that £([I{z)] has an expansion which defines the rigidity x by

1 _
i) = _PV+A}/+W f dq (}IQ2+KQ4+' . ')|51(Q)12+' - (8)
where the ellipsis denotes terms of higher power in @ or |8/(Q)|. Before we continue we
make the following remarks with regard to the expansion (8).

(a) For consistency the coefficient of Q2 appearing in parentheses must be associated
with the exact equilibrium tension of the planar interface,

(b) We have assumed that there are no terms of order @* as might arise due to the
presence of long-ranged dispersion forces. Qur subsequent analysis will concentrate on
systems with short-ranged forces.

(c) In the case g — 0% the expansion is only strictly valid provided y and « exist in
this limit. Whilst physically y must be positive finite the behaviour of ¥ as g — 0% is
not known a priori. As we shall see, however, in the most important application of our
formalism the value of « is well-behaved when the external field is made infinitesimally
small.

Having carefully defined $4[i(y)] it is now straightforward to derive the desired
expressions for y and «. We suppose that the constrained profile pg(r) may be calculated
perturbatively by writing

pa(r) = po(z) + dpz(r) )]

and recall that po{z%) = p*X. The value of the grand potential functional is then calculated
using a standard functional Taylor series. We find

kpT
o)) = Alav@1+ 2 [ [ ary arabos(r) €O a0+ (10)

where C®(r, ;) is the equilibrium planar interface direct correlation function [1].
This strategy of expanding about a planar profile is of course not new. However the
above analysis is novel because the density fluctuation Spg(r) is itself determined by
a minimization principle. To proceed we suppose that dpg(r) may be expressed as a
convolution:

sz(r)=fz\(z; ly —y'D8iy) dy. (11)

The function A(z; ly — %'|) will play a crucial role in the subsequent analysis. Physically,
it describes the influence of a local fluctuation in the position of a surface of fixed
magnetization on a distant point. Next we introduce further Fourier transforms

ED (1, 2, Q) = f dyiz €992CD (ry, ry) (12)
and

$paei @ = [ du $¥¥apa(r)  i=12 (13)
From (11} we see that

8p=(zi Q) = A Q) SHQ). (14)
If we define the moments of a Fourier transform F(zy,...; @) by

Fa,..:Q) = Fyzy,.. )+ Bz, .. )Q + - (15)
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we can expand (11) about the point ¥’ = y to find
8pa(r) = Ao(@) 1Y) — AoV I(y) + ---. (16)

Thus, the zeroth and second moments of A(z; Q) are related to the local translations and
curvature of the collective coordinate I(y) respectively. The crossing criterion (4) generates
the boundary condition

AGE%; Q) = —pi(z%) + OEUQ)) (17)
which adds to the bulk condition
A(too; Q) =0. (18)

From these considerations we conclude that to order V2/(y) the fluctuation Spg(r)
corresponds to a rigid shift of the equilibrium interface, ie.

p=(r) = polz — 81()) + O(V2I(y), 81(m)) (19)

and s0 Ag(z) = —p5(z). When calculating the rigidity «, however, it is essential that the
full solution (16) is used. Substituting equations (12), (13), (14) and (15) into (10) and
making use of the Yvon equation

[ des mencatarz = -vien 20)
we find, in the limit g — 0%,

y =keT f f dzy dza p(2)Catar, )04(2) e
and
k(pX) = kaT f [ dz) dzz [pg(z1)Ce(z1, 22)ph(z2)

~204(21)Clz1, 22)A2(z2) + Aa(2)Colz1, 2 Aa(22)]. (22)

Equation (21) is the usual Triezenberg—Zwanzig result for the surface tension, while (22) is
a formal equation for the rigidity of the surface of fixed density p* and may be regarded
as the main result of the paper. At this point we make the following remarks.

(2) The direct correlation function C(z;,z2; Q) and equilibrium profile po(z) are
independent of the choice of p¥, so the surface tension y is unigue.

(b) The rigidity « depends on the function Az(z). From the boundary condition (17)
we have Az(z¥) = 0, so different choices of p* will result in different locations for the
zeros of this function. Consequently the rigidity « must be regarded as being specific to
the surface of fixed density o%. This observation should not be regarded as being a defect
of the present formalism. We shall argue that the dependence of « on the choice of p¥ is
related to the detailed structure of the density—density correlation function G(ry, r2).

(c) In some previous fluctuation theories of the rigidity [5] a minimization principle has
not been used to define pz(r). Consequently the form of the fluctuation dp=(r) has not
been rigorously defined and has been assumed to be the rigid shift (19) neglecting terms
of order V2(y). The resulting expression for « is of the form (22) but with A,(z) set to
zero. Within the present theory such an ansatz for §pz(r) generates a unique (independent
of p*) upper bound on «

€ < kaT f f 81 dzz p()Ca(z1, 04). 23)
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The next step in our argument is to show that the expressions (21) and (22) are precisely
those that need to be adopted when one uses the method of FI to construct the effective
interfacial Hamiltonian H[/{y)] for an asymptotically free interface. For this purpose
we shall follow the notation of FI and use a spin density m(r) as our microscopic order
parameter. First FJ carefully define [{y) via, say, a crossing criterion (see equation (4)) then
define Hi[I(y)] via a partial trace over configurations m(r) in the space I" {which, recall,
respect the crossing criterion):

e~ EllWl/ kT f Dm(r) e~ HIm)/ kT (24)
m(r)el’

where H[m(r)] is the underlying continuum microscopic Hamiltonian, FI make the
(systematic) assumption that the trace may be evaluated using a saddle-point approximation
because the fluctuations in m, (r) € I' are controlled by a small bulk correlation length &,.
Hence they first calculate the profile mz(r) € T" such that

Himz(r)] < Hlmy(r)] mg # my (25)
and identify
H[l(3] = Himz(r)]. (26)

Equations (25) and ¢26) are clearly analogous to equations (3} and (6) in our DF theory. It
should be noted however that the minimization condition is exact in the DF formalism whilst
it arises from a saddle-point approximation in the FJ theory. From the above it follows that
when adopting the FJ method for calculating the effective Hamiltonian for a free interface
to order @*

Hliy)l = f dQ (MQ?* + Q@ISR (27)

2 (2 )d [
the tension and rigidity parameters 3y and x7 must be evaluated using the expressions (21)
and (22) using the Hamiltonian functional H[m(r)] as a microscopic grand potential density

function.
To illustrate our analysis we calculate a rigidity «; appropriate to the Landau—-Ginzburg—

Wilson (LGW) Hamiltonian defined by

2
Hugwlm(r)] = f ar ((V’") +<b(m)) 28)

where & (m) is an appropriate double-well potential function which we assume has the Ising
symmetry $(m) = $(—m). Because we are considering the properties of an asymptotically
free interface there is no need to introduce a surface term and the boundary conditions used
in minimizing (28) are m(r) — £myy for z — o0, In our calculation we have initially
chosen m* = 0 and set z¥ = 0. Using methods directly related to the calculation of
correlation functions in mean-field DF theories [6] we find for the moments of A(z; &)

Aolz) = —m'(2) (29)

Jz| o
AZ(Z) — m.-(z)f dZ’ mr(zf)—zf dz" m.r(zﬂ)Z . (30)
4]

2"

where the derivative of the ‘intrinsic” profile satisfies the vsual Euler-Lagrange equation

r 2
@ — O(m) — D(muuge). 31y
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For large values of iz| analysis shows that Ax(z) has the asymptotic behaviour

lzigs 2l
> & > L (32)
This result has important consequences for the local perturbation émg{r) given by (16).
Suppose that {{y) contains a dominant contribution in its Fourier transform at wavevector
q. Then we may write V¥(y) ~ q? 81(y) from which it follows that the fluctuation Smz(r)
is characterized by two different spacial regimes:

(i) if &lz] < 1/¢* the fluctuation is dominated by the ‘rigid” shift (19) related to the
local translation of the interface— in this region the surface tension largely determines the
associated change in (free} energy due to a distortion;

(ii) if & [z| 3> 1/g° the fluctuation is dominated by the local curvature of the collective
coordinate— in this regime the rigidity of the surface of fixed magnetization m* (= Q)
must be taken into account.

Az(z) ~m'(z)

Whilst the solution for A,(z) clearly indicates the presence of these two regimes it is
not particularly illuminating as regards the function A(z; |y —~y']). To this end we envoke a
simple double-parabola model &(m) = & 2(m % mpun)? for the regimes m < Gand m > 0
respectively. In this approximation it is possible to solve for A(z; Q) and invert the function
to obtain

d 7 i)
dmg(r) = —m'(z) f dy’ a—sz(r) 8i(y" / f dy/ a—sz(r) d=3 (33)

where Gu(r} « e“’r’sb/r is the (three-dimensional) mean-feld bulk correlation function.
Here the displacement » = ./(z2+(y—1')?). We believe that equation (33) is asymptotically
correct for distances |z| /£, 3> 1 within the full LGw model (i.e. beyond the double parabola)
since it correctly identifies Ao(z) and Aj(z) at these length scales. Moreover, we suspect
that the relationship between dmg(r) and the bulk correlation function Gy(r) is true beyond
the LGW Hamiltonian and is generic to model DF theories at least for systems with short-
ranged forces. Hence we believe that the approximation (32) may be used beyond the
present LGW theory.

From the explicit results (29) and (30) it is straightforward to calculate the rigidity. For
the LGW Hamijltonian the expression for x1{0) corresponding to the rigidity of the surface
of fixed magnetization m* =0 is

[a's] ¥4 oG
&(0) = —2kg T f dz m'(z)? f dz' m' (7t | dz” m(2")* (34)
Q L] z

where, recall, we have set zX = 0. We note that the expression for « is negative as is
required by the inequality (23). Recall that within square-gradient theory Calz1,22) = 0,
so the rigidity vanishes unless proper care is taken of the minimization principle (see the
remarks preceding equation (23) above). This is consistent with previous work which in
effect has Asz(z) = 0 [5]. The temperature dependence of x1(0) can be easily calculated
from (34). Ast = (T. — T)/ T, — 0 we find &3(0) ~ ##~?" where fi and v are the surface
tension and correlation length critical exponents respectively. This result suggests that the
intrinsic rigidity obeys the intriguing hyperscaling relation #;(0) ~ t@=?" for d < 4.

It is possible to calculate x((m*) within the LGW model for arbitrary m*, We omit the
details and simply quote the result for the case m* > 0:

12%| o0
ki (m®) = k1 (0) — y fo dz m'(z)7? f dz’ m'(z')? (35)
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where z* satisfies m(z%) = m¥ and k1 (m*) = k5(—m¥). For large values of {z¥| we find
Ky (m*y ~ k() — y|z¥|&,/2, so the density dependence of the rigidity is pronounced. This
result is rather important as we show below. Furthermore, it follows from equation (35)
that the rigidity is maximal for the normal choice of collective coordinate corresponding to
the surface at z¥ = 0.

To complete our analysis we show that the predicted m*-dependence of « is required
in order that we fully describe the singular behaviour of density—density correlations
at a liquid—vapour interface. From (34) and (35) it is clear that the FJ method of
systematically integrating out degrees of freedom generates a continvous set of Hamiltonians
[Hi[l(y); m¥]} each of which describes a surface of fixed magnetization m*. This
observation has already been made for the case of wetting transitions [7] where the
Hamiltonians Hi[I(y); m¥%] have position- {{(y)-) dependent parameters [4]. For the case
of the free interface there is no position dependence of y and x(mX) (because there is
no wall} but the set of Hamiltonians is still important. To see this we follow the method
introduced in [7] and calculate the mean-field spin-spin correlation function G(ry, ) for
the free interface from the set of Hamiltonians. Each of the Hamiltonians HyI(y); m¥]
can be used to calculate expectation values denoted { - },x. In particular the connected
spin-spin correlation function is given by

G(ry, T m%) = (Sma(r)) Sme(ra))m (36)

for each Hamiltonian. From (11} and (16) we see that the relationship between dmz and
8I(y) is, in general, rather complicated. Consequently the set of all generated correlation
functions {G(ry, ro; m*)} is difficult to calculate. Following Parry [7], however, we make
the ansatz that the mean-field (MF) correlation function GMF(r, +') for z = z’ corresponds
to the the value of G in the set of all correlation functions {G} for which mX = m(z) with
r = (z,y). For the choice of m* at this particular position the relationship between émz
and &I{y) is simple (see (17)). Hence it is easy to calculate

M, ) = Gr, v mi) for z=12". 6N
The result is most elegantly written in Fourier space:
G, Q) = f G(ry, 12)e V2 dyp (3%)

and yields the prediction
keTm'(z)?  kaTm'(2)%k (m(z))
yQ? 2

where «{m(z)) is given by (35). A full discussion of this method will appear in a
future paper (8], Equation (39) is a prediction for the MF form of G from the set of
interfacial Hamiltonians using the identification (37). To check this we have calculated
the MF correlation function GMF(z, z; @) by explicitly solving the appropriate Ornstein—
Zemike equation, and find that the result (39) with the identification (35) is indeed
the analytic solution. Consequently unless the rigidity is allowed to have the predicted
density/magnetization dependence the correct position dependence of the MF correlation
function will not be generated. It is important to note that the derivation of the correct MP
correlation function is required for true thermodynamic consistency. To see this recall that
the MF limit corresponds to the saddle-point approximation to the partition function, so the
FJ identification (26) (for every possible m¥) should be capable of exactly reproducing MF
theory expressions for correlation functions. This has been shown to be the case using the
identification (37).

G, 2;Q) = + Q) (39
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