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excess grand potential of a liquid-vapour interface and the 
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Received 9 May 1994. in final form 9 June 1994 

Abstract. We develop a theory for the wavevector expansion of the excess grand potential of a 
Liquid-vapour interface emphasizing the need to minimize the grand potential density functional 
for a given collective coordinate l ( y )  denoting the position of a surface of fixed density px 
(magnetization m x ) .  We rederive the Triezenkrg-Zwanzig formula for the surface tension 
y which hs a unique value independent of p x .  Our analysis yields a new expression for 
a rigidity w ( p x )  which is strongly dependent on the pMicular value of p y  used to define 
l(y). We show that the expressions derived for ~ ( p ~ )  (and y )  are precisely those that need 
to be adopted when using the recently developed Fisher-lin method of deriving an effective 
interfacial Hamiltonian appropriate to an asymptotically free interface From the set of effective 
Hamiltonians describing the fluctuations of surfaces of all possible fixed density/magnetization 
we derive the correct analflc mean-field expression for the position dependence of the spin-spin 
"elation function for a free interface modelled by a Landau-Ginzburg-Wilson Hamiltonian. 
We emphasize that allowing for the mx.dependence of the rigidity is essential in this study of 
interfacial correlations to achieve true thermodynamic consistency. 

In developing a microscopic theory of inhomogeneous fluids a central concern is the 
derivation of exact expressions relating the surface tension (or excess grand potential) to 
integrals involving one-point and two-point (correlation) functions [I]. Analysis of such 
exact sum rules has been shown to provide a great deal of information about fluctuations 
and correlations at fluid interfaces [2]. Complementing this approach are studies of effective 
interfacial Hamiltonians which model the fluctuations of a collective coordinate rather than 
a microscopic order parameter [3]. Whilst these models are not mly  microscopic their 
analysis has been largely responsible for the recent upsurge in interest and understanding of 
fluid interfacial phenomena. In the present paper we shall make connection between a formal 
density-functional (DF) approach to inhomogeneous fluids and the recent seminal work of 
Fisher and Jin (FJ) [4] who have carefully derived an effective interfacial Hamiltonian from 
a more microscopic Landau-Ginzburg-Wilson Hamiltonian. We consider how the surface 
tension y and a rigidity K for an asymptotically free interface may be formally defined from 
DF theory emphasizing the need to impose a minimization principle on the grand potential 
density functional Q[p(+)] .  We rederive the well-known Triezenberg-Zwanzig formula [l] 
for the surface tension and give a new expression for an appropriately defined rigidity in 
terms of integrals over one-point and two-point functions [5 ] .  Our expresion for K properly 
accounts for the effect of the curvature of a collective coordinate on the density distribution 
which minimizes the grand potential density functional. The main conclusions of our study 
are as follows. 
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(i) The rigidity K = t ( p X )  is strongly dependent on the choice of crossing-criterion 
density p x .  That is, surfaces of different fixed densities have very different rigidities. In 
contrast the surface tension y is unique. 

(ii) The expression for ~ ( p ' )  derived is precisely that which needs to be used when 
following the F1 method of deriving effective interfacial Hamiltonians. 

(iii) The detailed position dependence of the density4ensity correlation function 
at mean-field level is correctly described by a continuous set of effective interfacial 
Hamiltonians each of which models the fluctuations of surfaces of different fixed densities 
with different rigidities. Allowing for the px-dependence of K is essential for bue 
thermodynamic consistency. 

To begin consider an equilibrium planar liquid-gas interface separating coexisting bulk 
liquid and gas phases. We suppose that the interface is localized near the plane z = 0 by, say, 
an extremely weak gravitational field modelled by an external potential V ( T )  = mgz. The 
grand potential Q Qpl,, may be written as the sum of the bulk and surface contributions 
(ignoring the negligible gravitational field): 

(1) 
where p is the bulk pressure, V is the total (infinite) volume and A is the planar area. 
According to DF theory the grand potential C2 corresponds to the minimum value of the 
grand potential density functional Q [ p ( ~ ) l  in the presence of the external field V ( r ) .  It is 
convenient to write this in the following way. Suppose that the planar equilibrium profile 
&(z) has the specific value po(zx)  = px at position zx. Now consider the space of all 
distributions p x ( r )  which satisfy p x ( r  = (zx, y)) = p x  for all values of the transverse 
position vector y. Then we can write 

and identify 

Qpi- = -pV  + y A  

Q[PO(T)~  < Q[p,(r)l pX # PO (2) 

Q[PO(791 = QPlanar. (3) 
We wish to generalize the thermodynamic expression (1 )  and minimization condition (2) 

by considering non-planar distributions characterized by a collective coordinate I(y). 
Following FJ we note that there are various possible definitions of Z(y). We will adopt a 
crossing-criterion approach although the formalism is trivially adapted to other definitions. 
Consider now a space r of distributions p y ( r )  which satisfy the crossing criterion 

That is the collective coordinate I(y) denotes a surface of fixed density px. The value of 
p x  E (4, p ~ )  but need not be further specified in the formalism. Now we suppose that 
3 pE E r for which 

and define a collective coordinate functional 

p,(r = (z = ~ ( a r ) ,  Y)) = p X  %I. (4) 

Q [ P E ( r ) l  < Q[P,(dl P, # P E  (5) 

QlIKY)l = Q[ps(r)l. (6) 
Minimization of Ql[i(y)] with respect to I(y) recovers the unconstrained minimum (3). 

From the constrained minimum potential (6) we can proceed to define new fluid properties 
by supposing that Q#(pl)] has an appropriate representation generalizing (1). First let us 
suppose that the fluctuations are very smalI such that Il(y) - z x I  << 1. Also we assume 
that the transverse Fourier transform 

dy  eig'Y(Z(y) - z x )  (7) 
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is non-zero only for very small values of the wavevector Q. With these provisos we 
postulate that Q,[l(y)] has an expansion which defines the rigidity K by 

/ dQ (yQZ+~Q4+.  . .)l&(Q)t+. . . (8) 

where the ellipsis denotes terms of higher power in Q or I&(Q)I. Before we continue we 
make the following remarks with regard to the expansion (8). 

(a) For consistency the coefficient of Q2 appearing in parentheses must be associated 
with the exact equilibrium tension of the planar interface. 

(b) We have assumed that there are no terms of order Q3 as might arise due to the 
presence of long-ranged dispersion forces. Our subsequent analysis will concentrate on 
systems with short-ranged forces. 

(c) In the case g -+ O+ the expansion is only strictly valid provided y and K exist in 
this limit. Whilst physically y must be positive finite the behaviour of K as g -+ O+ is 
not known a priori. As we shall see, however, in the most important application of our 
formalism the value of K is well-behaved when the external field is made infinitesimally 
small. 

Having carefully defined Q[l(y)] it is now straightforward to derive the desired 
expressions for y and IC. We suppose that the constrained profile ~ E ( T )  may be calculated 
pertnrbatively by writing 

P 3 ( T )  = d z )  +&%(T) (9) 
and recall that po(zx) = px. The value of the grand potential functional is then calculated 
using a standard functional Taylor series. We find 

Qbs(~)l= nIm(2)I + - (10) 

where C @ ) ( T ~ , T ~ )  is the equilibrium planar interface direct correlation function [I]. 
This shategy of expanding about a planar profile is of course not new. However the 
above analysis is novel because the density fluctuation SpE(r )  is itself determined by 
a minimization principle. To proceed we suppose that &E(?-) may be expressed as a 
convolution: 

2(2n)d-' W ( Y ) l  = - p V + A y +  

dTi dTz 6ps(~i)  C"'(TI, TZ)  SPE(TZ) + . . kBT 2 ! / 

~ P B ( T )  A(z; Iy - y'l) SZ(y') dy'. (11) J 
The function A(z; Iy - y'l) will play a crucial role in the subsequent analysis. Physically, 
it describes the influence of a local fluctuation in the position of a suface of Bxed 
magnetization on a distant point. Next we introduce further Fourier hansforms 

P ( z 1 ,  z2; Q)  G dy12 e'Q'MZC")(~l, 7 2 )  (12) J 
and 

&(z i ;  Q)  = 1 dyt e'Q'Yc6ps(ri) i = 1.2. (13) 

From (1 1) we see that 

&(ZI: Q) = K ( z ~ ;  Q)fi(Q). 

~ ( z  '(II,... ; Q ) = ~ ~ : o ( z i ,  ... ) + ~ ~ ( ~ i  ,... )QZ t... 

(14) 
If we define the moments of a Fourier transform ~ ( z I ,  . . . ; Q)  by 

(15) 
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we can expand (1 1) about the point y' = y to find 
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G p d r )  = Aa(z)Gl(v) - ir2(Z)V2I(Y)+..'. (16) 
Thus, the zeroth and second moments of A(z; Q) are related to the local translations and 
curvature of the collective coordinate I(y) respectively. The crossing criterion (4) generates 
the boundary condition 

(17) A(zX; Q) = -P&(Z*) + S(SI(Q)) 
which adds to the bulk condition 

li(i00; Q) = 0. (18) 
From these considerations we conclude that to order p l ( y )  the fluctuation &(r) 
corresponds to a rigid shift of the equilibrium interface, i.e. 

(19) 
and so A&) = -pA(z). When calculating the rigidity K .  however, it is essential that the 
full solution (16) is used. Substituting equations (12), (13), (14) and (15) into (IO) and 
making use of the Yvon equation 

P d T )  = po(z - GZ(Y)) + OCVZI(Z/), S W )  

/dzz P;)(zz)&I,zz) = -V'(ZI) (20) 

y =knT/ /dz i  &z P&(z~)~z (z I , zz )P~(zz )  (21) 

we find, in the limit g + O+, 

and 

~ ( p ' )  = k . T /  / &I dzz [p;)(zd&h(zt, ZZ)P;(ZZ) 

Equation (21) is the usual Triezenberg-Zwanzig result for the surface tension, while (22) is 
a formal equation for the rigidity of the surface of fixed density p x  and may be regarded 
as the main result of the paper. At this point we make the following remarks. 

(a) The direct correlation function ~ ( Z I ,  22; Q) and equilibrium profile &(z)  are 
independent of the choice of p x .  so the surface tension y is unique. 

(b) The rigidity K depends on the function &(z). From the boundary condition (17) 
we have i\z(zx) = 0, so different choices of px will result in different locations for the 
zeros of this function. Consequently the rigidity K must be regarded as being specific to 
the surface of fixed density p x .  This observation should not be regarded as being a defect 
of the present formalism. We shall argue that the dependence of K on the choice of px is 
related to the detailed structure of the density-density correlation function G(r l ,  rz). 

(c) In some previous fluctuation theories of the rigidity [ 5 ]  a minimization principle has 
not been used to define p ~ ( r ) .  Consequently the form of the fluctuation Spa(r)  has not 
been rigorously defined and has been assumed to be the rigid shift (19) neglecting terms 
of order 'J?l(y). The resulting expression for K is of the form (22) but with &(z) set to 
zero. Within the present theory such an ansatz for S p g ( r )  generates a unique (independent 
of p x )  upper bound on K 

-2P&(z,)~z~z1,z2)ir2(z2) + i r z ~ ~ l ~ c o ~ z l .  z2)Az(zz)1. (22) 

K 6 b T  / / dzl dzz P & ( z I ) ~ ~ z I ,  ZZ)P&~. (23) 
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The next step in our argument is to show that the expressions (21) and (22) are precisely 
those that need to be adopted when one uses the method of FJ to construct the effective 
interfacial Hamiltonian H,[l(y)] for an asymptotically free intexface. For this purpose 
we shall follow the notation of FI and use a spin density m(r)  as our microscopic order 
parameter. First FI carefully define l(y) via, say, a crossing criterion (see equation (4)) then 
define H~[l(y)] via a partial trace over configurations m ( r )  in the space r (which, recall, 
respect the crossing criterion): 

(W D ~ ( ~ )  e-H[m(T)llkeT s e - H d f ( ~ ) l l W  = 
m(c)er 

where H [ m ( r ) ]  is the underlying continuum microscopic Hamiltonian. FJ make the 
(systematic) assumption that the trace may be evaluated using a saddle-point approximation 
because the fluctuations in m x ( r )  E r are controlled by a small bulk correlation length &,. 
Hence they first calculate the profile ms(r) E r such that 

H [ m d r ) l  -= H[m,(r)l m z  # m, (25) 

HI[~(Y)I = H[m&)l. (26) 

Equations (25) and (26) are clearly analogous to equations (5) and (6) in our DF theory. It 
should be noted however that the minimization condition is exact in the DF formalism whilst 
it arises from a saddle-point approximation in the FJ theory. From the above it follows that 
when adopting the FI method for calculating the effective Hamiltonian for a free interface 
to order Q4 

and identify 

HI[l(Y)l = 2(27&1 / dQ (nQ’ + ~lQ~)la(Q)l* (27) 

the tension and rigidity parameters M and K, must be evaluated using the expressions (21) 
and (22) using the Hamiltonian functional H[m(r )J  as a microscopic grand potential density 
function. 

To illustrate our analysis we calculate a rigidity KI appropriate to the Landau-Ginzburg- 
Wilson (LGW) Hamiltonian defined by 

where Q(m)  is an appropriate doublewell potential function which we assume has the king 
symmetry @(m) = @(-m). Because we are considering the properties of an asymptotically 
free interface there is no need to introduce a surface term and the boundary conditions used 
in minimizing (28) are m ( r )  -+ f m b d k  for z -+ *CO. In our calculation we have initially 
chosen mx = 0 and set zx = 0. Using methods directly related to the calculation of 
correlation functions in mean-field DF theories [6] we find for the moments of A(z; Q) 

Adz) = -m’(z) (29) 

Az(z) = m‘(z) 1 dz’ m’(z’)-’~~dz” m’(z”)’ (30) 
ILI 

where the derivative of the ‘intrinsic’ profile satisfies the usual Euler-Lagrange equation 
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For large values of IzI analysis shows that &(z) has the asymptotic behaviour 
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(32) 

This result has important consequences for the local perturbation Gma(r) given by (16). 
Suppose that i(y) contains a dominant contribution in its Fourier transform at wavevector 
q. Then we may write vl(y) - qz 6l(y) from which it follows that the fluctuation Gm&) 
is characterized by two different spacial regimes: 

(i) if &,[zl << l/qz the fluctuation is dominated by the 'rigid' shift (19) related to the 
local translation of the interface- in this region the surface tension largely determines the 
associated change in (free) energy due to a distortion: 

(ii) if .$,[z[ >> I/qz the fluctuation is dominated by the local curvature of the collective 
coordinate- in this regime the rigidity of the surface of fixed magnetization mx (= 0) 
must be taken into account. 

Whilst the solution for &z) clearly indicates the presence of these two regimes it is 
not particularly illuminating as regards the function h(z; 1y -y'l). To this end we envoke a 
simple double-parabola model @(m) = $r2(m f mbm)' for the regimes m < 0 and m > 0 
respectively. In this approximation it is possible to solve for A(z: Q) and invert the function 
to obtain 

(33) 1 / % Gb(r) d = 3 8m&) = -m'(z) / dy' %Gb(r )  w(Y? 

where Gb(r) K e-'/h/r is the (three-dimensional) mean-field bulk correlation function. 
Here the displacement r = J ( ~ ~ + ( y - y ' ) ~ ) .  We believe that equation (33) is asymptotically 
correct for distances lzl/& >> 1 within the full LGW model (i.e. beyond the double parabola) 
since it correctly identifies &,(z) and &(z) at these length scales. Moreover, we suspect 
that the relationship between Sma(r) and the bulk correlation function Gb(r) is true beyond 
the LGW Hamiltonian and is generic to model DF theories at least for systems with short- 
ranged forces. Hence we believe that the approximation (32) may be used beyond the 
present LOW theory. 

From the explicit results (29) and (30) it is straightforward to calculate the rigidity. For 
the LGW Hamiltonian the expression for q(O) corresponding to the rigidity of the surface 
of fixed magnetization mx = 0 is 

k l t b  ~ ~ 

eb 
h ( z )  - 

a a 

dz m'(z)'[ dz' m'(z)-' l m d z "  m'(z'')' (34) 

where, recall, we have set z x  = 0. We note that the expression for K is negative as is 
required by the inequality (23). Recall that within square-gradient theory &(zI, 22) = 0, 
so the rigidity vanishes unless proper care is taken of the minimization principle (see the 
remarks preceding equation (23) above). This is consistent with previous work which in 
effect has 1?z(z) = 0 [5 ] .  The temperature dependence of KI(O) can be easily calculated 
from (34). As f (Tc - T ) / T ,  --f 0 we find ~ ( 0 )  - tfi-2" where F and U are the surface 
tension and correlation length critical exponents respectively. This result suggests that the 
intrinsic rigidity obeys the intriguing hyperscaling relation ~ ~ ( 0 )  - t(d-3)" for d < 4. 

It is possible to calculate q ( m X )  within the LGW model for arbitrary mx.  we omit the 
details and simply quote the result for the case mx > 0 
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where zx satisfies m ( z X )  = m x  and K I ( ~ ' )  = K I ( - ~ ' ) .  For large values of jzxl we find 
q ( m X )  - KI(O) - ylzXl&,/2, so the density dependence of the rigidity is pronounced. This 
result is rather important as we show below. Furthermore. it follows from equation (35) 
that the rigidity is maximal for the mm1 choice of collective coordinate corresponding to 
the surface at zx = 0. 

To complete our analysis we show that the predicted mx-dependence of K is required 
in order that we fully describe the singular behaviour of density-jensity correlations 
at a liquid-vapour interface. From (34) and (35) it is clear that the FJ method of 
systematically integrating out degrees of freedom generates a continuous set of Hamiltonians 
[Hr[l(y);mX]) each of which describes a surface of fixed magnetization mx. This 
observation has already been made for the case of wetting transitions [7] where the 
Hamiltonians Hl[E(y); mX] have position- (Z(y)-) dependent parameters [4]. For the case 
of the free interface there is no position dependence of y and ~ ( m ~ )  (because there is 
no wall) but the set of Hamiltonians is still important. To see this we follow the method 
inaoduced in [7] and calculate the mean-field spin-spin correlation function G ( q ,  TZ) for 
the free interface from the set of Hamiltonians. Each of the Hamiltonians H][l(y); m X ]  
can be used to calculate expectation values denoted ( . ),,,x. In particular the connected 
spin-spin correlation function is given by 

G(r1, rz; mX) = @mdn)8mz(Tz)),x (36) 
for each Hamiltonian. From (11) and (16) we see that the relationship between 8ms and 
8Z(y) is, in general, rather complicated. Consequently the set of all generated correlation 
functions ( G ( T I ,  TZ; mX)) is difficult to calculate. Following Parry [7], however, we make 
the ansak that the mean-field (MF) correlation function GMF(v, T') for z = z' corresponds 
to the the value of G in the set of all correlation functions { G )  for which mx = m(z)  with 
T = (z, y). For the choice of mx at this particular position the relationship between 6ms 
and 6l(y) is simple (see (17)). Hence it is easy to calculate 

for z = z'. (37) GMF(v, T') = G(T,  T'; m(z)) 

The result is most elegantly written in Fourier space: 

~ ( z I ,  ZZ; Q) = 1 G ( ~ I ,  rz)e'9'nz dylz (38) 

and yields the prediction 

where K ( ~ ( z ) )  is given by (35). A full discussion of this method will appear in a 
future paper [8]. Equation (39) is a prediction for the MF form of G from the set of 
interfacial Hamiltonians using the identification (37). To check this we have calculated 
the im Correlation function Em(,, z ;  Q)  by explicitly solving the appropriate Omstein- 
Zemike equation, and find that the result (39) with the identification (35) is indeed 
the analytic solution. Consequently unless the rigidity is allowed to have the predicted 
densityhagnetization dependence the correct position dependence of the MF correlation 
function will not be generated. It is important to note that the derivation of the correct Mp 

correlation function is required for true thermodynamic consistency. To see this recall that 
the MF limit corresponds to the saddle-point approximation to the partition function, so the 
FJ identification (26) (for every possible mX) should be capable of exactly reproducing MF 
theory expressions for correlation functions. This has been shown to be the case using the 
identification (37). 



7206 

Acknowledgments 

The authors have benefited from correspondence and discussion with Professor M E Fisher, 
Professor R Evans and D C Hoyle. This work was supported by the EPSRC. 

A 0 Parry and C .I Eoulfei 

References 

[I] Rowlinson J S and Widom B 1982 Molecular Theory of Copillwiry (Oxford: Clmndon) 
[2] Henderson J R 1992 Fundammtnlr OflnhDmogeneovs Fluids ed D Henderson (New York Dekker) ch 2 
(31 See. for emnple. 

Forgacs G, Lipowsky R and Nieuwenhuizen Th M 1991 P h e  Ttonsitions ond Critical Phenomena vol 14, 
ed C Domb and I L Lebowitz (New York. Academic) p 135 

[41 fisher M E and Jin A J 1991 P b s .  Rev. B 44 1430, 1992 Phys Ret'. Len. 69 792 
Sin A J and Fisher M E 1993 Phys. Rev. B 47 7365; 1993 Pkys. Rev. B 48 2642 
Fisher M E, l i  A J and Parry A 0 1994 Proc. Discuss. Meeting ' P h e  Trmitions (U hterjaces'; Ber. 

I51 See the brief review by 
Blokhuis E M  and Bedeaux D 1993 MoLPhys. 80 705 
and references Lherein; in panicular: 
Romero-Rochln V, Vma C and Robledo A 1991 Phys. Rev. A 44 8417: 1992 Physica A 184 367 
Napiorkowski M and Dietrich S 1992 2 Phys. B 89 263 

Bunrenges. Phys. Chem. 98 357 

[6] Parry A 0 and Bodter C J 1994 J.  Phyx. A: M a h .  Gen. 27 1877 
[7] Parry A 0 1993 J. Pkys. A: Math Gen. 26 L667 
[8] Parry A 0 and Boulter C J 1994 to be published 


